metabelian, soluble, monomial, A-group
Aliases: C24⋊C5, SmallGroup(80,49)
Series: Derived ►Chief ►Lower central ►Upper central
C24 — C24⋊C5 |
Generators and relations for C24⋊C5
G = < a,b,c,d,e | a2=b2=c2=d2=e5=1, ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, ede-1=a >
Character table of C24⋊C5
class | 1 | 2A | 2B | 2C | 5A | 5B | 5C | 5D | |
size | 1 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | linear of order 5 |
ρ3 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | linear of order 5 |
ρ6 | 5 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ7 | 5 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ8 | 5 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | orthogonal faithful |
(2 9)(3 10)(4 6)(5 7)
(4 6)(5 7)
(1 8)(4 6)
(1 8)(3 10)(4 6)(5 7)
(1 2 3 4 5)(6 7 8 9 10)
G:=sub<Sym(10)| (2,9)(3,10)(4,6)(5,7), (4,6)(5,7), (1,8)(4,6), (1,8)(3,10)(4,6)(5,7), (1,2,3,4,5)(6,7,8,9,10)>;
G:=Group( (2,9)(3,10)(4,6)(5,7), (4,6)(5,7), (1,8)(4,6), (1,8)(3,10)(4,6)(5,7), (1,2,3,4,5)(6,7,8,9,10) );
G=PermutationGroup([[(2,9),(3,10),(4,6),(5,7)], [(4,6),(5,7)], [(1,8),(4,6)], [(1,8),(3,10),(4,6),(5,7)], [(1,2,3,4,5),(6,7,8,9,10)]])
G:=TransitiveGroup(10,8);
(1 9)(2 12)(3 11)(4 5)(6 7)(8 14)(10 15)(13 16)
(1 13)(2 4)(3 10)(5 12)(6 14)(7 8)(9 16)(11 15)
(1 6)(2 11)(3 12)(4 15)(5 10)(7 9)(8 16)(13 14)
(1 10)(2 8)(3 13)(4 7)(5 6)(9 15)(11 16)(12 14)
(2 3 4 5 6)(7 8 9 10 11)(12 13 14 15 16)
G:=sub<Sym(16)| (1,9)(2,12)(3,11)(4,5)(6,7)(8,14)(10,15)(13,16), (1,13)(2,4)(3,10)(5,12)(6,14)(7,8)(9,16)(11,15), (1,6)(2,11)(3,12)(4,15)(5,10)(7,9)(8,16)(13,14), (1,10)(2,8)(3,13)(4,7)(5,6)(9,15)(11,16)(12,14), (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16)>;
G:=Group( (1,9)(2,12)(3,11)(4,5)(6,7)(8,14)(10,15)(13,16), (1,13)(2,4)(3,10)(5,12)(6,14)(7,8)(9,16)(11,15), (1,6)(2,11)(3,12)(4,15)(5,10)(7,9)(8,16)(13,14), (1,10)(2,8)(3,13)(4,7)(5,6)(9,15)(11,16)(12,14), (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16) );
G=PermutationGroup([[(1,9),(2,12),(3,11),(4,5),(6,7),(8,14),(10,15),(13,16)], [(1,13),(2,4),(3,10),(5,12),(6,14),(7,8),(9,16),(11,15)], [(1,6),(2,11),(3,12),(4,15),(5,10),(7,9),(8,16),(13,14)], [(1,10),(2,8),(3,13),(4,7),(5,6),(9,15),(11,16),(12,14)], [(2,3,4,5,6),(7,8,9,10,11),(12,13,14,15,16)]])
G:=TransitiveGroup(16,178);
(1 7)(2 8)(3 18)(4 10)(5 14)(6 20)(9 12)(11 17)(13 19)(15 16)
(1 15)(2 11)(3 18)(4 19)(7 16)(8 17)(9 12)(10 13)
(1 15)(3 9)(5 20)(6 14)(7 16)(12 18)
(1 15)(2 8)(3 9)(4 19)(5 6)(7 16)(10 13)(11 17)(12 18)(14 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (1,7)(2,8)(3,18)(4,10)(5,14)(6,20)(9,12)(11,17)(13,19)(15,16), (1,15)(2,11)(3,18)(4,19)(7,16)(8,17)(9,12)(10,13), (1,15)(3,9)(5,20)(6,14)(7,16)(12,18), (1,15)(2,8)(3,9)(4,19)(5,6)(7,16)(10,13)(11,17)(12,18)(14,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (1,7)(2,8)(3,18)(4,10)(5,14)(6,20)(9,12)(11,17)(13,19)(15,16), (1,15)(2,11)(3,18)(4,19)(7,16)(8,17)(9,12)(10,13), (1,15)(3,9)(5,20)(6,14)(7,16)(12,18), (1,15)(2,8)(3,9)(4,19)(5,6)(7,16)(10,13)(11,17)(12,18)(14,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(1,7),(2,8),(3,18),(4,10),(5,14),(6,20),(9,12),(11,17),(13,19),(15,16)], [(1,15),(2,11),(3,18),(4,19),(7,16),(8,17),(9,12),(10,13)], [(1,15),(3,9),(5,20),(6,14),(7,16),(12,18)], [(1,15),(2,8),(3,9),(4,19),(5,6),(7,16),(10,13),(11,17),(12,18),(14,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,17);
(2 7)(3 13)(4 14)(5 10)(8 18)(9 19)(12 17)(15 20)
(1 16)(3 18)(4 9)(5 10)(6 11)(8 13)(14 19)(15 20)
(1 11)(2 17)(3 18)(4 14)(6 16)(7 12)(8 13)(9 19)
(1 6)(3 8)(4 14)(5 15)(9 19)(10 20)(11 16)(13 18)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
G:=sub<Sym(20)| (2,7)(3,13)(4,14)(5,10)(8,18)(9,19)(12,17)(15,20), (1,16)(3,18)(4,9)(5,10)(6,11)(8,13)(14,19)(15,20), (1,11)(2,17)(3,18)(4,14)(6,16)(7,12)(8,13)(9,19), (1,6)(3,8)(4,14)(5,15)(9,19)(10,20)(11,16)(13,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)>;
G:=Group( (2,7)(3,13)(4,14)(5,10)(8,18)(9,19)(12,17)(15,20), (1,16)(3,18)(4,9)(5,10)(6,11)(8,13)(14,19)(15,20), (1,11)(2,17)(3,18)(4,14)(6,16)(7,12)(8,13)(9,19), (1,6)(3,8)(4,14)(5,15)(9,19)(10,20)(11,16)(13,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20) );
G=PermutationGroup([[(2,7),(3,13),(4,14),(5,10),(8,18),(9,19),(12,17),(15,20)], [(1,16),(3,18),(4,9),(5,10),(6,11),(8,13),(14,19),(15,20)], [(1,11),(2,17),(3,18),(4,14),(6,16),(7,12),(8,13),(9,19)], [(1,6),(3,8),(4,14),(5,15),(9,19),(10,20),(11,16),(13,18)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)]])
G:=TransitiveGroup(20,23);
C24⋊C5 is a maximal subgroup of
C24⋊D5 F16
C24⋊C5 is a maximal quotient of 2- 1+4⋊C5 C24⋊C25
action | f(x) | Disc(f) |
---|---|---|
10T8 | x10-20x8+149x6-519x4+851x2-529 | 210·118·236 |
Matrix representation of C24⋊C5 ►in GL5(ℤ)
1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
G:=sub<GL(5,Integers())| [1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1],[-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1],[-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1],[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C24⋊C5 in GAP, Magma, Sage, TeX
C_2^4\rtimes C_5
% in TeX
G:=Group("C2^4:C5");
// GroupNames label
G:=SmallGroup(80,49);
// by ID
G=gap.SmallGroup(80,49);
# by ID
G:=PCGroup([5,-5,-2,2,2,2,401,677,1103,1879]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^5=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,e*d*e^-1=a>;
// generators/relations
Export
Subgroup lattice of C24⋊C5 in TeX
Character table of C24⋊C5 in TeX